Pins a.s.b.l., FNR, FreeLens TV

Video des Experiments

Bei diesem Experiment geht es darum, Informationen zu übertragen: die Musik aus einem Audio-Gerät. Diese Musik soll vom Audio-Gerät über den Laser-Strahl zur Solarzelle und von dort zu einem Lautsprecher übertragen werden – so dass man sie schlussendlich hören kann.

Wie ist die Übertragung von Musik bei solch unterschiedlichen Geräten möglich?

Das Audio-Gerät, das die Musik abspielt, sendet elektrische Signale über ein Kabel zum Laser. Diese Signale bestehen aus unregelmäßigen, schnellen Veränderungen einer kleinen elektrischen Spannung. Sie entsprechen genau den akustischen Schallwellen (= Luftdruckveränderungen), welche ein angeschlossener Lautsprecher aussenden würde und die unser Ohr erreichen würden, wenn wir uns in der Nähe dieses Lautsprechers aufhielten.

Der Laser empfängt also eine sich zeitlich schnell verändernde elektrische Spannung. Ist die Spannung kleiner, so ist auch der Laserstrahl schwächer. Steigt die Spannung wieder an, so wird auch der Laserstrahl stärker. Die Spannungsänderungen des Audiogerätes werden in Helligkeitsänderungen des Laserstrahls umgewandelt.

Die vom Laser angestrahlte Solarzelle erzeugt einen stärkeren elektrischen Strom, wenn der Laserstrahl heller ist und einen schwächeren, wenn der Laserstrahl schwächer ist. Die Helligkeitsveränderungen des Laserstrahls werden in Stromstärkeveränderungen der Solarzelle umgewandelt.

Schlussendlich gelangt der Solarzellenstrom über ein Kabel in den Lautsprecher, dessen Membran mechanische Schwingungen ausführt, genau nach dem Muster der Stromstärkeveränderungen. Er erzeugt in der umgebenden Luft Schallwellen (= Luftdruckveränderungen) entsprechend den Schwingungen der Lautsprechermembran.

Die vom Lautsprecher erzeugten Schallwellen sind die Gleichen, als wenn er sofort an die Audioquelle angeschlossen worden wäre: Wir hören die entsprechende wunderbare Musik.

Tuning

Durch die große Fläche der Solarzelle können auch grössere Distanzen überbrückt werden (20m). Der Strahl des Lasers weitet sich zwar, aber es kommt immer noch genug Licht auf der Solarzelle an. Es ist auch möglich den Strahl mit Spiegeln umzulenken. Somit kann sich der Empfänger auch ausserhalb der Sichtweite des Senders befinden.

Autor: Roland Damiani (Pins a.s.b.l.), André Mousset (MNHN), Jean-Paul Bertemes (FNR)
Video:
Roland Damiani (Pins a.s.b.l.), Jean-Paul Bertemes (FNR), FreeLens TV
Musik: Jean-Paul Bertemes (FNR)

Infobox

Der Sender

 

Das veränderliche Ausgangssignal der Audioquelle wird über den Widerstand geleitet und verursacht dort eine veränderliche Spannung. Diese hat entsprechende veränderliche Helligkeitsunterschiede des Laserstrahls zur Folge. Diese Helligkeitsänderung ist sehr schwach und mit dem Auge kaum wahrnehmbar.

 

Der Empfänger

 

Die benutzte Solarzelle als Empfänger ist sehr wohl in der Lage diese schwachen Lichtänderungen wahr zu nehmen. Die Lichtänderungen führen dazu, dass die Solarzelle nun ihrerseits einen sich ändernden elektrischen Strom erzeugt, der sich zeitlich genauso verändert wie das ursprüngliche Audiosignal. Mit Hilfe eines Verstärkers und eines Lautsprechers wird die Musik wieder hörbar gemacht.

Somit können Entfernungen von mehreren Metern problemlos überbrückt werden.

Der Kondensator am Eingang der Schaltung ist wichtig, da er die Wechselspannung der Audioquelle durchlässt, die Gleichspannung der Batterie jedoch nicht. Die Gleichspannung könnte das Eingabegerät beschädigen.

 

Digitaler optischer Richtfunk

 

Richtfunk mit Laserstrecken, d.h Datenübertragung per Laser, wird bei nicht zu weit auseinanderliegenden Gebäuden (50m bis einige km) benutzt, um Daten zwischen den Gebäuden auszutauschen , ohne auf ein öffentliches Telekommunikationssystem zurückgreifen oder Leitungen verlegen zu müssen.

Nachteile: Einfluss durch Wetter: Bei Nebel, Regen oder Schnee kann sich der Datendurchsatz erheblich verringern, oder unterbrochen werden. Deshalb werden meistens mehrere Laser gleichzeitig eingesetzt um eine sichere Übertragung zu gewährleisten

(Quelle: Wikipedia)

 

Auch interessant

Lichtstreuung Reproduziere die blaue Farbe des Himmels und einen Sonnenuntergang!

In diesem Experiment machen wir Sonnenuntergänge mit einer Taschenlampe, Wasser und etwas Milch nach!

FNR
METALLGONG-EXPERIMENT Entdeck geheim Kläng mat engem Bigel an enger Schnouer!

Metallgong-Experiment: Probéier et selwer aus a looss dech iwwerraschen...

FNR
pH-Indikator Unterscheide Säuren und Laugen mit Hilfe von Rotkohlsaft

Chemiker nennen Stoffe wie Rotkohlsaft Indikator. Indikatoren ermöglichen es festzstellen, ob eine Flüssigkeit eine Säu...

Auch in dieser Rubrik

Halloween-Experiment Zwee einfach Rezepter fir Slime

Pech a Wäschmëttel oder Maisstäerkt a Shampoing, an e bësse Liewensmëttelfaarf – méi brauchs Du net fir dëst glibbregt Experiment – extra fir Halloween!

FNR
Mr Science und die Wasserrakete
Wasser-Experiment Baue eine einfache Wasserrakete!

Hier findest Du eine kleine Anleitung um ganz leicht eine Wasserrakete zu bauen.

FNR
Lichtstreuung Reproduziere die blaue Farbe des Himmels und einen Sonnenuntergang!

In diesem Experiment machen wir Sonnenuntergänge mit einer Taschenlampe, Wasser und etwas Milch nach!

FNR